CISD [TakingProphets]🧠 Indicator Purpose:
The "CISD - Change in State of Delivery" is a precision tool designed for traders utilizing ICT (Inner Circle Trader) conecpets. It detects critical shifts in delivery conditions after liquidity sweeps — helping you spot true smart money activity and optimal trade opportunities. This script is especially valuable for traders applying liquidity concepts, displacement recognition, and market structure shifts at both intraday and swing levels.
🌟 What Makes This Indicator Unique:
Unlike basic trend-following or scalping tools, CISD operates through a two-phase smart money logic:
Liquidity Sweep Detection (sweeping Buyside or Sellside Liquidity).
State of Delivery Change Identification (through bearish or bullish displacement after the sweep).
It intelligently tracks candle sequences and only signals a CISD event after true displacement — offering a much deeper context than ordinary indicators.
⚙️ How the Indicator Works:
Swing Point Detection: Identifies recent pivot highs/lows to map Buyside Liquidity (BSL) and Sellside Liquidity (SSL) zones.
Liquidity Sweeps: Watches for price breaches of these liquidity points to detect institutional stop hunts.
Sequence Recognition: Finds series of same-direction candles before sweeps to mark institutional accumulation/distribution.
Change of Delivery Confirmation: Confirms CISD only after significant displacement moves price against the initial candle sequence.
Visual Markings: Automatically plots CISD lines and optional labels, customizable in color, style, and size.
🎯 How to Use It:
Identify Liquidity Sweeps: Watch for CISD levels plotted after a liquidity sweep event.
Plan Entries: Look for retracements into CISD lines for high-probability entries.
Manage Risk: Use CISD levels to refine your stop-loss and profit-taking zones.
Best Application:
After stop hunts during Killzones (London Open, New York AM).
As part of the Flow State Model: identify higher timeframe PD Arrays ➔ wait for lower timeframe CISD confirmation.
🔎 Underlying Concepts:
Liquidity Pools: Highs and lows cluster stop orders, attracting institutional sweeps.
Displacement: Powerful price moves post-sweep confirm smart money involvement.
Market Structure: CISD frequently precedes major Change of Character (CHoCH) or Break of Structure (BOS) shifts.
🎨 Customization Options:
Adjustable line color, width, and style (solid, dashed, dotted).
Optional label display with customizable color and sizing.
Line extension settings to keep CISD zones visible for future reference.
✅ Recommended for:
Traders studying ICT Smart Money Concepts.
Intraday scalpers and higher timeframe swing traders.
Traders who want to improve entries around liquidity sweeps and institutional displacement moves.
🚀 Bonus Tip:
For maximum confluence, pair this with the HTF POI, ICT Liquidity Levels, and HTF Market Structure indicators available at TakingProphets.com! 🔥
Indicadores e estratégias
🌎 Modern Economic Eras - Visual Backgrounds & LabelsModern Economic Eras - Visual Backgrounds & Labels
This indicator highlights key modern economic eras with distinct background shading and floating labels, based on the structural macroeconomic periods identified by Deutsche Bank in their Long-Term Asset Return Study (2020).
🌎 First Era of Globalization (1860–1914)
A period of strong global growth, trade expansion, and low inflation, ending with World War I.
⚔️ Great Wars and the Depression (1914–1945)
The most turbulent period in modern history, marked by conflict, economic hardship, and volatile inflation.
🪙 Bretton Woods & Gold System (1945–1971)
Post-war stability driven by gold-backed currencies, strong growth, and the creation of modern welfare states.
💸 Fiat Money & High Inflation Era (1971–1980)
After the collapse of Bretton Woods, fiat currencies led to global inflation surges and economic instability.
🌍 Second Era of Globalization (1980–2020?)
A golden age of asset returns, global trade boom, China's reintegration, and falling inflation supported by demographic trends.
⚡ Age of Disorder (2020–????)
Characterized by rising geopolitical tensions (especially US-China), high debt levels, political fragmentation, demographic reversals, inequality challenges, and environmental pressures.
Each era is visually segmented and labeled above the chart for intuitive historical context.
This tool helps traders and investors understand the broader macro context behind asset price movements across different long-term regimes.
Useful for:
✅ Macro analysis
✅ Historical financial studies
✅ Long-term strategic planning
Compatible with any asset and timeframe, although it is intended primarily for use on indices like the S&P 500 (SPX).
BTC Price-Volume Efficiency Z-Score (PVER-Z)Overview:
This PVER-Z Score measures Bitcoin’s price movement efficiency relative to trading volume, normalized using a Z-Score over a long-term 200-day period.
It highlights statistically rare inefficiencies, helping investors spot extreme accumulation and distribution zones for systematic SDCA strategies.
Concept:
- Measures how efficiently price has moved relative to the volume that supported it over a long historical window (Default 200 days) but can be adjustable.
- It compares cumulative price changes vs cumulative volume flow.
- Then normalizes those inefficiencies using Z-Score statistics.
How It Works:
1. Calculates the absolute daily price change divided by volume (price-volume efficiency ratio).
2. Applies EMA smoothing to remove noisy fluctuations.
3. Normalizes the result into a Z-Score to detect statistically significant outliers.
4. Plots dynamic heatmap colors as the efficiency score moves through different deviation zones.
5. Background fills appear when the Z-Score moves beyond ±2 to ±3 SD, signaling rare macro opportunities.
Why is Bitcoin price rising while PVER-Z is falling toward green zone?
1. PVER-Z is not just "price" — it's price change relative to volume. PVER-Z measures how efficient the price movement is relative to volume. It's not "price going up" or "price going down" directly. It's how unusual or inefficient the price versus volume relationship is, compared to its historical average.
2. A rising Bitcoin price + weak efficiency = PVER-Z falls.
If Bitcoin rises but volume is super strong (normal buying volume), no problem, the PVER-Z stays normal. If Bitcoin rises but with very weak volume support, PVER-Z falls.
***Usage Notes***:
- Best used on the daily timeframe or higher.
- When the Z-Score enters the green zone (-2 to -3 SD), it signals a historically rare accumulation zone — favoring long-term buying for SDCA.
- When the Z-Score enters the red zone (+2 to +3 SD), it signals overextended distribution — caution recommended.
- Designed strictly for mean-reversion analysis, no trend-following signals.
- The red zone on a proper Z chart would be -2SD to -3SD and +2SD to +3SD for the green zone. At the time of publishing I do not know how to adjust the values on the indicator itself. The red zone at -2SD is actually +2 Standard Deviations on a Z Score SD Chart. (overbought zone).
- Your green zone at +2SD is actually -2SD Standard Deviations (oversold zone).
- Built manually with no reliance on built-in indicators
- Designed for Bitcoin on the 1D, 3D, or Weekly timeframes. NOT for intraday trading.
- DO NOT SOELY RELY ON THIS INDICATOR FOR YOUR LONG TERM VALUATION. I AM NOT RESPONSIBLE FOR YOUR FINANICAL ASSETS.
theonator bank volume entry & exitThe best high volume indicator out there, find where the big boys go long & short trough high volume trading, be the first to know to be the moneymaker
MSS + Confirmation + RSI + Strong Candle FilterMSS Strong Confirmed Indicator
This indicator is designed to detect only the strongest entry opportunities based on strict conditions:
✅ MSS (Market Structure Shift) detection.
✅ Waiting for a strong confirmation candle (body > 60% of total candle length).
✅ RSI filter (above 50 for Long, below 50 for Short).
✅ AlphaTrend trend confirmation.
✅ Automatic drawing of Take Profit (TP) and Stop Loss (SL) levels.
Only rare, high-probability entries are shown — no noise, no false signals.
Ideal for traders who prioritize accuracy and quality over quantity.
Script created and designed by Taha Shalata 💎🚀
Gabriel's Adaptive MA📜 Gabriel's Adaptive MA — Indicator Description
Gabriel's Adaptive Moving Average (GAMA) is a dynamic trend-following indicator that intelligently adjusts its smoothing based on both trend strength and market volatility.
It is designed to provide faster responsiveness during strong moves while maintaining stability during choppy or consolidating periods.
🧠 What it does:
This indicator plots a custom-built, highly dynamic Moving Average that adapts itself intelligently based on:
Trend Strength (via Perry Kaufman's Efficiency Ratio)
Market Volatility (via Tushar Chande's Volatility Ratio)
It reacts faster when the market is trending strongly and/or highly volatile,
and it smooths out and slows down when the market is choppy or calm.
🔍 How it works (step-by-step):
1. User Inputs:
length: (default 14)
How many bars to look back for calculations.
fastSC: Fastest possible smoothing constant (hardcoded as 2 / (2+1))
slowSC: Slowest possible smoothing constant (hardcoded as 2 / (30+1))
(These are used to control how fast/slow the KAMA can react.)
2. Calculate Trendiness — Kaufman Efficiency Ratio (ER):
Net Change = Absolute difference between current close and close from length bars ago.
Sum of Absolute Changes = Sum of absolute price changes between every bar inside the length window.
Efficiency Ratio (ER) = Net Change divided by Sum of Changes.
✅ If ER is close to 1 → Smooth, trending market.
✅ If ER is close to 0 → Choppy, sideways market.
3. Calculate Bumpiness — Volatility Ratio (VR):
Short-Term Volatility = Standard deviation of close over length.
Long-Term Volatility = Standard deviation of close over length * 2.
Volatility Ratio (VR) = Short-Term Volatility divided by Long-Term Volatility.
✅ If VR is >1 → Market is becoming more volatile recently.
✅ If VR is <1 → Market is calming down.
4. Create the Hybrid Alpha:
Multiply ER × VR.
Then square the result (math.pow(..., 2)).
This hybrid alpha decides how aggressive the MA should be based on both trend and volatility.
If ER and VR are both strong → big alpha → fast movement.
If ER and/or VR are weak → small alpha → slow movement.
5. Calculate the Final Adaptive Smoothing Constant (hybridSC):
hybridSC = slowSC + hybridAlpha × (fastSC - slowSC)
This smoothly interpolates between the slowest and fastest smoothing depending on market conditions.
6. Calculate and Plot the Adaptive MA:
The moving average is manually calculated:
hybridMA := na(hybridMA ) ? close : hybridMA + hybridSC * (close - hybridMA )
It behaves like an EMA but with dynamic smoothing, not a fixed alpha.
✅ If hybridSC is high → MA hugs the price closely.
✅ If hybridSC is low → MA stays smooth and resists noise.
Finally, it plots this Adaptive MA on the chart in blue color.
📊 Visual Summary
Market Type What Happens to GAMA
Trending hard + volatile Follows price quickly
Trending hard + calm Follows steadily but carefully
Sideways + volatile Reacts carefully (won't chase noise)
Sideways + calm Smooths heavily (avoids fakeouts)
✨ Main Strengths:
Adapts automatically without you tuning settings manually every time market changes.
Responds smartly to both trend quality (ER) and market energy (VR).
Reduces lag during real moves.
Filters out false signals during choppy mess.
🧪 Key Innovation compared to normal MAs:
Traditional MA Gabriel's Adaptive MA
Same smoothing every bar Dynamic smoothing every bar
Slow during fast moves Adapts fast during real moves
No understanding of volatility or trendiness Full market sensitivity
⚡ **Simple One-Line Description:**
"Gabriel's Adaptive MA is a dynamic, trend-and-volatility-sensitive moving average that intelligently adjusts its speed to match market conditions."
Market Breadth Peaks & Troughs IndicatorIndicator Overview
Market Breadth (S5TH) visualizes extremes of market strength and weakness by overlaying -
a 200-period EMA (long-term trend)
a 5-period EMA (short-term trend, user-adjustable)
on the percentage of S&P 500 constituents trading above their 200-day SMA (INDEX:S5TH).
Peaks (▼) and troughs (▲) are detected with prominence filters so you can quickly spot overbought and oversold conditions.
⸻
1. Core Logic
Component Description
Breadth series INDEX:S5TH — % of S&P 500 stocks above their 200-SMA
Long EMA 200-EMA to capture the primary trend
Short EMA 5-EMA (default, editable) for short-term swings
Peak detection ta.pivothigh + prominence ⇒ major peaks marked with red ▼
Trough detection (200 EMA) ta.pivotlow + prominence + value < longTroughLvl ⇒ blue ▲
Trough detection (5 EMA) ta.pivotlow + prominence + value < shortTroughLvl ⇒ green ▲
Background shading Pink when 200 EMA slope is down and 5 EMA sits below 200 EMA
⸻
2. Adjustable Parameters (input())
Group Variable Default Purpose
Symbol breadthSym INDEX:S5TH Breadth index
Long EMA longLen 200 Period of long EMA
Short EMA shortLen 5 Period of short EMA
Pivot width (long) pivotLen 20 Bars left/right for 200-EMA peaks/troughs
Pivot width (short) pivotLenS 10 Bars for 5-EMA troughs
Prominence (long) promThresh 0.5 %-pt Depth filter for 200-EMA pivots
Prominence (short) promThreshS 3.0 %-pt Depth filter for 5-EMA pivots
Trough level (long) longTroughLvl 50 % Max value to accept a 200-EMA trough
Trough level (short) shortTroughLvl 30 % Max value to accept a 5-EMA trough
⸻
3. Signal Guide
Marker / Color Meaning Typical reading
Red ▼ Major breadth peak Overbought / possible top
Blue ▲ Deep 200-EMA trough End of mid-term correction
Green ▲ Shallow 5-EMA trough (early) Short-term rebound setup
Pink background Long-term down-trend and short-term weak Risk-off phase
⸻
4. Typical Use Cases
1. Counter-trend timing
• Fade greed: trim longs on red ▼
• Buy fear: scale in on green ▲; add on blue ▲
2. Trend filter
• Avoid new longs while the background is pink; wait for a trough & recovery.
3. Risk management
• Reduce exposure when peaks appear, reload partial size on confirmed troughs.
⸻
5. Notes & Tips
• INDEX:S5TH is sourced from TradingView and may be back-adjusted when index membership changes.
• Fine-tune pivotLen, promThresh, and level thresholds to match current volatility before relying on alerts or automated rules.
• Slope thresholds (±0.10 %-pt) that trigger background shading can also be customized for different market regimes.
On Balance Volume MomentumA combination of "On Balance Volume (OBV)" and "Volume Oscillator" with customized parameters.
A combination of "On Balance Volume (OBV)" and "Volume Oscillator" with customized parameters.
A combination of "On Balance Volume (OBV)" and "Volume Oscillator" with customized parameters.
A combination of "On Balance Volume (OBV)" and "Volume Oscillator" with customized parameters.
A combination of "On Balance Volume (OBV)" and "Volume Oscillator" with customized parameters.
A combination of "On Balance Volume (OBV)" and "Volume Oscillator" with customized parameters.
Relative StrengthRelative-Strength with custom parameters.
Relative-Strength with custom parameters.
Relative-Strength with custom parameters.
Relative-Strength with custom parameters.
Relative-Strength with custom parameters.
Relative-Strength with custom parameters.
Relative-Strength with custom parameters.
Relative-Strength with custom parameters.
Relative-Strength with custom parameters.
Relative-Strength with custom parameters.
RSI + MACD + Liquidity FinderLiquidity Finder: The liquidity zones are heuristic and based on volume and swing points. You may need to tweak the volumeThreshold and lookback to match the asset's volatility and timeframe.
Timeframe: This script works on any timeframe, but signals may vary in reliability (e.g., higher timeframes like 4H or 1D may reduce noise).
Customization: You can modify signal conditions (e.g., require only RSI or MACD) or add filters like trend direction using moving averages.
Backtesting: Use TradingView's strategy tester to evaluate performance by converting the indicator to a strategy (replace plotshape with strategy.entry/strategy.close).
cabreras Dynamic TRIX Heatmap OscillatorKey Features
TRIX Calculation
Computes three successive EMAs of your chosen source (default: close) over a user-configurable length
Expresses momentum as the percent change from one bar to the next
Heatmap Coloring
Automatically blends between three colors (weak, neutral, strong) based on how far TRIX sits within your defined range
“Weak” zone (low momentum), “neutral” midpoint, “strong” zone (high momentum)
Fully customizable color inputs and thresholds
Reference Lines
Zero Line: quickly see bullish vs. bearish momentum
High/Low Bands: optional overbought/oversold or custom momentum limits
Flexible Inputs
Source (e.g. close, hlc3, typical) and TRIX Length
Color Inputs for all three momentum zones
Normalization Range (minTRIX / maxTRIX) to match expected volatility
Neutral Threshold (midPointLevel) to split “weak” vs. “strong”
High/Low Line Levels and toggles for all reference lines
How to Use
Add to Chart
Paste the script into TradingView’s Pine Editor (v6) and hit “Add to Chart.”
Customize Ranges
Match minTRIX/maxTRIX to the typical swing of your market (e.g. ±0.05) so you see full red→yellow→green gradients.
Set Color Zones
Pick distinct “weak,” “neutral,” and “strong” colors for clear visual contrast.
Interpret
Green bars = accelerating bullish momentum
Red bars = strong bearish momentum
Yellow bars = indecision or transition
Use Reference Lines
Reset midPointLevel to shift neutrality, or add high/low bands to highlight extreme momentum conditions and trigger alerts.
With its intuitive color-blending and flexible thresholds, this oscillator makes it easy to spot momentum build-ups, exhaustion phases, and cross-threshold reversals—all at a single glance.
Accurate Global M2 (Top10 GDP, FX-Stabilized)This script was created to solve the serious distortions found in other circulating "Global M2" indicators.
Many previous versions used noisy daily FX rates, unweighted country data, mixed liquidity categories (e.g., RRP, TGA), or aggregated low-quality sources, causing exaggerated or misleading charts.
This version fixes those problems by:
Using Top 10 global economies only (based on GDP).
GDP-weighting each country's M2 contribution.
Fetching monthly-averaged M2 data.
Applying monthly FX conversions to eliminate daily volatility noise.
Forward-shifting the M2 line (default 90 days) to study potential Bitcoin correlations.
Keeping the math clean, without mixing central bank liquidity tools with broad M2 aggregates.
As a result, this script provides a more realistic and stable representation of global M2 expansion in USD terms, more suitable for serious macroeconomic analysis and Bitcoin market correlation studies.
Daily Premarket High & LowThis script finds the premarket highs and lows and draws those levels on the intraday chart.
Kalman Filtered RSI | [DeV]The Kalman Filtered RSI indicator is an advanced tool designed for traders who want precise, noise-free market insights. By enhancing the classic Relative Strength Index (RSI) with a Kalman filter, this indicator delivers a smoother, more reliable view of market momentum, helping you identify trends, reversals, and overbought/oversold conditions with greater accuracy. It’s an ideal choice for traders seeking clear signals amidst market volatility, giving you a competitive edge across any trading environment.
The RSI measures momentum by analyzing price movements over a set period, typically 14 bars. It calculates the average of price gains on up days and the average of price losses on down days, then compares these to produce a value between 0 and 100. An RSI above 70 often indicates an overbought market that may reverse downward, while below 30 suggests an oversold market that could reverse upward. RSI is great for spotting momentum shifts, potential reversals, and trend strength, but it can be noisy in choppy markets, leading to misleading signals.
That's where the Kalman filter comes in; it enhances the RSI by applying a sophisticated smoothing process that predicts the RSI’s next value based on its historical trend, then updates this prediction with the actual RSI reading. It operates in two phases: prediction and correction. In the prediction phase, it uses the previous filtered RSI and adds uncertainty from process noise (Q), which is derived from the historical variance of RSI changes, reflecting how much the RSI might unexpectedly shift. In the correction phase, it calculates a Kalman gain based on the ratio of prediction uncertainty to measurement noise (R), which is determined from the variance between raw RSI and a smoothed version, indicating the raw data’s noisiness. This gain weights how much the filter trusts the new RSI versus the prediction, blending them to produce a smoothed RSI that reduces noise while staying responsive to real trends, outperforming simpler methods like moving averages that often lag or oversmooth.
With the Kalman Filtered RSI, you get a refined view of momentum, making it easier to spot trends and reversals with clarity. This indicator’s ability to dynamically adapt to market changes delivers timely, reliable signals, making it a powerful addition to your trading strategy for any market or timeframe.
Multi-Day VWAP, current session only)Variation on multi day vwap, where you can choose to display 1, 2 and 3 day vwap, but only plot the current session. So each session has all 3 plots. This is especially useful for backtesting purposes. St. deviation bands included as usual.
V3 Theonator Bank Volume Entry & Exitsnipe the huz out of the banks like tralala leo trlala like this indicator is fine shi liek fr
Theonator Bank Volume Entry & Exit v2best of the best im telling you liek this shit slapps the bank in the head
Theonator Bank Volume Entry & Exit v2This is the best of the best of the best idnicators for sniping the big boys and aboslutely stealing cash from the other retail brokeys, just follow it on like silver or sum and it will actully blow ur mind to pieces