PINE LIBRARY

ApproximateGaussianSmoothing

Atualizado
Library "ApproximateGaussianSmoothing"
This library provides a novel smoothing function for time-series data, serving as an alternative to SMA and EMA. Additionally, it provides some statistical processing, using moving averages as expected values in statistics.
'Approximate Gaussian Smoothing' (AGS) is designed to apply weights to time-series data that closely resemble Gaussian smoothing weights. it is easier to calculate than the similar ALMA.
In case AGS is used as a moving average, I named it 'Approximate Gaussian Weighted Moving Average' (AGWMA).

The formula is:
AGWMA = (EMA + EMA(EMA) + EMA(EMA(EMA)) + EMA(EMA(EMA(EMA)))) / 4
The EMA parameter alpha is 5 / (N + 4), using time period N (or length).


ma(src, length)
  Calculate moving average using AGS (AGWMA).
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Moving average.

analyse(src, length)
  Calculate mean and variance using AGS.
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Mean and variance.

analyse(dimensions, sources, length)
  Calculate mean and variance covariance matrix using AGS.
  Parameters:
    dimensions (simple int): Dimensions of sources to process.
    sources (array<float>): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Mean and variance covariance matrix.

trend(src, length)
  Calculate intercept (LSMA) and slope using AGS.
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Intercept and slope.
Notas de Lançamento
v2

更新:
trend(src, length)
  Calculate trend statistics using AGS.
  Parameters:
    src (float): Series of values to process.
    length (simple int): Number of bars (length).
  Returns: Slope, intercept, correlation and RSS.
Notas de Lançamento
v3
statistics

Biblioteca do Pine

De acordo com o verdadeiro espírito do TradingView, o autor publicou esse código Pine como uma biblioteca de código aberto para que outros programadores Pine de nossa comunidade possam reutilizá-lo. Parabéns ao autor! Você pode usar essa biblioteca de forma privada ou em outras publicações de código aberto, mas a reutilização desse código em uma publicação é regida pelas Regras da Casa.

Aviso legal